If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-8=0
a = 36; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·36·(-8)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*36}=\frac{0-24\sqrt{2}}{72} =-\frac{24\sqrt{2}}{72} =-\frac{\sqrt{2}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*36}=\frac{0+24\sqrt{2}}{72} =\frac{24\sqrt{2}}{72} =\frac{\sqrt{2}}{3} $
| 3x-7=25-3x | | 7.9=w-6 | | 4x+46=x+12 | | (5x)-2=46-7 | | (X^2*D^2+X*D-1)y=X | | 6-(3x+10)+4(2-x8=15 | | 3k+10=31 | | 174+2x+118=2x+68=360 | | 49n^2+4=20 | | 174+2x+118=360 | | -1+15=x+5 | | y+9=2y−80 | | 84+2x+118=2x+68=360 | | 84+2x+118=360 | | 10.50a+3.75+82=2071.50 | | 4y^2-3y=45 | | 10x-18=4x-12 | | .x-2=10-5x | | 8.9=z-4 | | f(2)=2+6 | | t-12=7=t=-19 | | 3x+17=7x+41 | | u-8.2=3.87 | | 2x-4=3/2=71 | | Xx10-18=xx4-12 | | 2x-27=19 | | 90=3(c+8) | | x-1.55=8.9 | | 6-6(x-4)=12 | | 25x+10x=11 | | 8x-40=57 | | -4(x+6)=-2(x-3) |